NEW ALGORITHMS FOR BALANCING BINARY SEARCH TREES

E. Haq*, Y. Cheng** and §. S. Iyengar*

*Department of Computer Science,

Louisiana State University,

Abstract

A simple iterative algorithm is presented for bal-
ancing an arbitrary binary search tree in linear time.
An efficient parallel algorithm is developed from the
iterative algorithm using shared memory model. The
number of processors used is equal to N, the number
of nodes in the tree. The proposed algorithm has time
complexity of O(1).

I. Introduction

Binary search trees provide an efficient method of
data storage and organization. If a binary search tree with
N nodes is completely balanced, then a delete or an inser-
tion operation on such a tree can be performed in O(log N)
time. If the tree is highly unbalanced, this time may be
O(N). There are two approaches of balancing binary trees,
one during each operation[4,5] on the tree and the other to
balance the tree periodically [1,2,3]. Sequential and paral-
lel algorithms for balancing binary search tree (BST) have
been developed in [2,3]. The iterative algorithm developed
in [3], uses two separate algorithms for balancing binary
search trees with nodes N = 2" —~ 1l and N < 2 — 1 ,
where n is the number of levels of the tree. We propose
a new algorithm for balancing BST, which trades space
for computational time than that in [3]. We first present
a sequential iterative algorithm for balancing a BST and
then we convert the sequential algorithm into a parallel
algorithm.

We use shared memory model (SMM) for the paral-
lel algorithm. Each processing element (PE) is capable
of performing all the standard arithmetic and logical op-
erations. Moreover, there is a common memory which is

shared by all the processors. All the PE’s can read and

** Department of Mathematics

Baton Rouge, Louisiana 70803

write into this memory, but care should be taken to avoid
read - write conflict. The PE’s are synchronized and they
operate under the control of a single instruction.

The paper is organized as follows. In section II we
introduce the iterative algorithm for balancing BST. In
section III, we convert the sequential algorithm to a par-

allel algorithm. Conclusions are given in section IV.

II. Iterative algorithm for balancing BST

The task of balancing a binary search tree is to adjust
the left and right pointers of the nodes in the tree, in such a
way that the height of the tree is minimized. In a balanced
tree, with N nodes, the search time will be O([log N]) as
opposed to O(N) in a highly unbalanced BST. In this pa-
per all logarithms are on base 2. Algorithms that dynami-
cally balance tree structure during insertion or deletion of
nodes are described by Knuth [4] and Tarjan [5]. Several
other recursive algorithm for balancing BST can be found
in [6,7,8]. In [3], two separate algorithms were presented
to balance BST with nodes, N =2" — 1 and N < 2" — 1,
where n = [log(/V +1)]. In this paper, we propose a new
iterative algorithm for balancing any arbitrary BST.

The first phase of the algorithm is to traverse the tree
in inorder and store the pointers in an array. We can
perform this traversal by a recursive routine. If we have
N = 2" — 1 nodes in a tree, then we get a balanced BST
with n levels. But if we have N < 2" —1 nodes in the tree,
then the tree will not be completely balanced. However,
the missing nodes will be at the highest level (n-th level)
and the tree will be completely balanced upto the (n — 1)-
th level. The number of missing nodes at the n-th level is
given by

§=(2"-1)-N (1)

Moreover, if we number the nodes of a completely balanced

378 88CH2571-8/88/0000-037881.00¢:1988IEEE

BST according to the inorder traversal of the tree, then
the nodes at the highest level are numbereed with odd
numbers 1,3,5...

If we have N = 2™ — 1 nodes in the original tree, then
we just traverse the tree in inorder and store the pointers in
an array. In this case the length of the array will be N. But
if we have N < 2™-1 nodes in the original tree, then we use
an array of length (S + N). We also note that the missing
nodes in a balanced tree are at the highest level and are
numbered with odd numbers. Thus when we traverse the
tree, we need to skip the positions corresponding to the
numbers assigned to the missing nodes in the array. This
can be done as follows.

Let node 7 be marked ! by inorder traversal. If N L is

the number of nodes at the n-th level (leaves), then,
NL=(N (21 -1) (2)

If I < 2NL then we use the I-th position in the array
to store pointers of the i-th node, otherwise we place the
pointers of the i-th node at 2(I — NL)-th position of the
array. Positions corresponding to the missing nodes are
marked NULL in the array. Algorithm Al recursively
traverses the tree in inorder and stores the pointers in
the array LINK. An example of inorder traversal when

N < 2™ —1is given in Figure 1.

ORDER | 1| 2| 3|45 (6])7 |8 _9 10 |11 {12 }13 |14 {15
ITEM [#2 [#7 #8 #6 #4 # #5 #3
KEY A|B c] E F G H

Figure 1. Inorder tree traversal storing the infor-
mation in the array.

ALGORITHM Al: Recursively traverses the tree in

inorder and stores the pointers in array LINK.

PROCEDURE TRAVERSE(T,N)
// traverses tree in Inorder //
DECLARE T,LINK(),LSON(),RSON()
PROCEDURE AUXTRAVERSE(T,N,NL)
BEGIN
IF T=NULL THEN RETURN
AUXTRAVERSE(LSON(T),N,NL)
N:=N+1
IF N < 2x NL THEN
LINK(K):=T
ELSE
BEGIN
K:=2(N-NL)
LINK(K):=T
LINK(K-1):=NULL
LINK(K+1):=NULL
END
AUXTRAVERSE(RSON(T),N,NL)
END // end of auxtraverse //
BEGIN // begin traverse //
n 1= [log(N +)]
NL:=(N-(2"""-1))
AUXTRAVERSE(T,0,NL)
END // end of traverse //

We next develop an iterative algorithm for balanc-
ing the tree by using the information stored in the ar-
ray LINK, In a completely balanced binary tree, the j-
th node from the left on i-th level, denoted by (4,7) has

27~ 4 (j —1)*2"" 1 nodes of key value less than or equal
to it. It is also observed that in such a tree, if the (7, 7)-th
node, i < n, has (iy,7;) and (41, j2) as leftson and rightson

respectively, then

Ky = KVLE(iy,j;) = K - 2" (3)
K, = KVLE(iy,j,) = K + 277! (4)

where,
K:2n—i_+_(j_1)*2n—i+1 (5)

and KV LE(i,j) denotes number of nodes with key value
less than or equal to the j-th node from the left on i-th

level.
Therefore for balancing a BST, the node correspond-
ing to the K-th cell in the array LINK will be (7,j)-th

379

node. Moreover, if i < n then it will have nodes corre-
sponding to the K;-th and K,-th cells in the array LINK
as its leftson and rightson, as determined by equations (3)
and (4), respectively. Furthermore, if K is odd, then, it
must be a leaf and therefore, its leftson and rightson will
be NULL. Algorithm A2 iteratively balances any arbitrary
BST.

This algorithm is similar to that in [3] for balancing
BST with nodes, N = 2" — 1. The way we use the ar-
ray LIN K, algorithm A2, will balance any arbitrary BST.
This algorithm is simple compared to the algorithm given
in (3] for balancing BST with nodes N < 2 — 1. How-
ever, our algorithm will require extra spaces for the array
LINK. The amount of extra space for the array LINK is
equal to the number of missing nodes (S) for a completely
balanced BST and this extra space may be at most O(N).
However, in the proposed algorithm, we trade space for
less computational time than that in [3]. For balancing

tree with nodes V < 2™ — 1, the alogrithm in [3] requires,

ALGORITHM A2 : Iteratively balances any arbitrary
BST

PROCEDURE BALANCE(n,NL)
// uses information stored in array LINK
and iteratively balances the tree //
/) n=TogN +11 //
// NL =(N —(2"~! — 1)) = leaves at n-th level //
INTEGER 1,J KK, K1,K2,K

BEGIN
FOR I:=1 TO n DO // for each level do //
BEGIN
IF (I=n) AND (NL # 0) THEN KK:=NL
ELSE
KK:=2/-1
FOR J:=1 TO KK DO //for all nodes at a level do //
BEGIN

K:=2""T4(J-1)«2n1H
IF ODD(K) THEN // Leaf //
LSON(LINK(K)):=NULL
RSON(LINK(K)):=NULL
ELSE // interior nodes //
BEGIN
Kl:=K-2~1-!
K2:= K 42711
LSON(LINKK)):=LINK(K1)
RSON(LINK(K)):=LINK(K2)
END
END // end of inner for loop //
END // end of outer for loop //
END // end of procedure Balance //

380

6 comparisons for each node to be placed not at the high-
est level and 2 comparisons for each node to be placed
at the highest level of the final balanced tree. On the
other hand, to determine the final position of any node
in the balanced tree, the proposed algorithm requires only
2 comparisons. Therefore, even though both algorithms
have the same time complexity O(N), our algorithm will

require less computational time.

III. Parallel algorithm for balancing BST

We propose two parallel algorithms for balancing any
arbitrary BST in constant time. In the first version of
the parallel algorithm, we use 2" — 1 processors, where
n = [log(V +1)]. If the tree is highly unbalanced, then we
shall be using more processors than the number of nodes.
The number of extra processors is given by equation (2).
However, only one processor per node will be active. Pro-
cessors are numbered 1 to 2”71, The processors assigned
to the missing nodes will not be active and these proces-
sors are at the highest level and are numbered with odd
numbers. In the second version of the parallel algorithm,
we use N processors, where N is the number of nodes in
the tree.

First we describe the parallel algorithm for inorder
tree traversal. As in (3], we now assume an extra field
’KNUM?’ with each node of the tree. The value of this
field for node i, K NUM(i), gives the number of nodes in
the BST with key value less than or equal to the key value
associated with node i. With each node of the BST we
attach a processor. Now, let node 7 has KNUM(i) = K.
If K < 2NL, where NL is given by equation (2), then the
node ¢ will be linked to the cell VLINK(K); otherwise it
will be linked to the cell LINK(2(K — NL)). Algorithm
A3 performs parallel inorder traversal of the tree and it

has a constant time complexity.

Now we can convert algorithm A2 into a parallel al-
gorithm. We allocate one processor per cell in the array
LINK and each processor should be able to set up its
own links to construct a balanced binary search tree in
constant time. Now with each processor Px we store the
height (k) of node K in the balanced BST. If we pass the
total number of nodes in the tree as a parameter to the
processors, then each processor will be able to find the fi-
nal level i , where i = n — h, of the node it is processing,in

the balanced tree . Each processor Px will set up the links

to the left and right sons of node K, using equations (3),
(4) and the array LINK in constant time.

Algorithm A4 balances any arbitrary BST in paral-
lel by executing all the processors simultaneously. This
algorithm is very simple compared to that in [3] and is
sufficient for handling both the cases (N = 2" — 1 and
N < 2™ — 1) of balancing binary search tree. It has a
constant time complexity.

ALGORITHM A3 . Parallel Traversal
Processors P, v Pay oo Pan_y;
of the tree.

Algorithm by
One processor for each node

PROCEDURE PTRAVERSE(NL)
DECLARE K,LINK(),KNUM()
FOR EACH PROCESSOR PK DO IN PARALLEL
BEGIN
IF KNUM(K) < 2N L THEN
LINK(KNUM(K)):=K
ELSE
BEGIN
N:=2(KNUM(K)-NL)
LINK(N):=K
LINK(N-1):=NULL
LINK(N+1):=NULL
END //end of else //
END // end of for clause //
END // end of procedure Ptraverse //

ALGORITHM A4: Parallel algorithm for balancing
arbitary BST using 2™ — 1 processors, n = [log(N + 1)].

PROCEDURE PBALANCE1
// parallel algorithm for balancing BST //
DECLARE N,LINK(),LSON();RSON()
FOR EACH PROCESSOR Px DO IN PARALLEL

DECLARE n,H,j,K

CONSTANT H,j

n=[log(N + 1)]

I:=n-H

IF ODD(K) AND (LINK(K)#NULL) THEN // leaf //
BEGIN
LSON(LINK(K)):=NULL
RSON(LINK(K)):=NULL
END

IF EVEN(K) THEN // interior nodes //
BEGIN
LSON(LINK(K)):=LINK (K — 2n-i-1)
RSON(LINK(K)):=LINK (K + 27-1-1)
END

END // end of the for loop 1/

END // end of Pbalancel //

Algorithm A5 balances any arbitray BST in constant
time using N processors, where N is equal to the number

of nodes in the tree. Instead of keeping the information of

the height of the nodes in the balanced tree with the pro-
cessors, a separate array is used to keep this information.
In the algorithm, this array is denoted by H. The length
of this array should be 2™ — 1, where n = [log(N + 1)].
With this information available to us, we can use N pro-
cessors to balance any arbitrary BST. Each processor will
access one cell of the array LINK. For each processor,
Py, we calculate the height for the node it is processing.
If K > 2N L, then we calculate a number, M = 2(K—NL),
otherwise M = K. Now the processor Py will access the
M-th cell of the array LINK. It will fetch the height in-
formation from the M-th cell of the array H. Thus each
processor will be able to calculate the final position of the
leftson and the rightson of the node it is processing, in the
balanced tree and accordingly restructures the pointers in

constant time.

ALGORITHM A5 : Parallel algorithm for balancing

any arbitrary BST using N processors.

PROCEDURE PBALANCE2

DECLARE M,N,LINK(),LSON(),RSON()

FOR EACH PROCESSOR Pk DO IN PARALLEL

DECLARE n,K,H(),L

IF K > 2NL THEN
M:=K+(K-2NL)

ELSE
M:=K

IF ODD(M) THEN // leaves //
BEGIN
LSON(LINK(K)):=NULL
RSON(LINK(K)):=NULL
END

ELSE IF EVEN(M) THEN
BEGIN
I:=n-H(M)
[=2on-i-1
LSON(LINK(M)):=LINK(M-L)
RSON(LINK(M)):=LINK(M+L)
END

END //end for //

END // end of Pbalance2 //

381

IV. Conclusions

In this paper, we have presented new algorithms for

balancing any arbitrary binary search tree with nodes N =

2" —1or N < 2™ —1, in sequential and in parallel modes.

The time complexity of the parallel algorithm is O(1) us-

ing N processors. This algorithm uses O(N + §) space ,

where S is the number of missing nodes of the completely

balanced tree at the highest level. Proposed algorithms

are simple and they require less comparisons to determine

the final position of a node in the balanced tree.

(1]

(7]

(8]

References

3. S. Iyengar and H. Chang, "Efficient Algorithms to
create and maintain Balanced and Threaded Binary
Search Trees”, Software-Practice and Experience, vol
15 (10), 925-941, Oct. 1985.

A. Moitra and S. S. Iyengar, A maximally parallel
Balancing Algorithm for obtaining complete Balanced
Binary Trees”, IEEE Trans. on Computers, Vol. C-
34, No. 6, pp. 563 -565, June 1985.

A. Moitra and S. S. Iyengar, ”Derivation of a Parallel
Algorithm for Balancing Binary Trees,” IEEE Trans.
on Software Engineering, vol. SE-12, No. 3, pp. 442
- 449, March 1986.

D. E. Knuth, The art of computer programming, vol
3: sorting and searching, Addison-Wesley, 1973.

R. E. Tarjan, Data Structure and Network algorithm,
Soc. for Ind. and Appl. Math., Philadelphia, 1987.
A. C. Day, "Balancing a binary tree”, Computer Jour-
nal, 19, 4 (Nov 1978), 360-361.

W. A. Martin and D. N. Ness, "Optimal binary trees
grown with a sorting algorithm”, Commun. ACM
15,2 (Feb 1972), 88-93.

F. 8. Quentin and L. W. Bette, "Tree Balancing in
optimal time and space”, Commun. ACM 29, 9 (Sep.
1986), 902-908.

New Address of Dr. Y. Cheng

AT & T Bell Laboratories
Crawfords Corner Road
Holmdel, New Jersey 07733

382

